Implementation of Generative Adversarial Network
(GAN) with PyTorch

Jacob Thrasher
West Virginia University
Eberly College of Arts and Sciences
Morgantown, WV
jdt0025 @mix.wvu.edu

Abstract—Generative Adversarial Networks (GANs) are gen-
erative models specialized in creating synthetic images from
randomly sampled noise. Two convolutional neural networks
compete in a two player non-zero sum game in which a generator
attempts to create new images to fool a discriminator that
determines whether a given image is real or fake. This Pytorch
implementation was trained on the CelebA dataset to generate
human faces from a normally distributed noise sample.

I. BACKGROUND

A. Generative Adversarial Networks (GANs)

Initially proposed by Ian Goodfellow in 2014, GANs are
generative models involving two independent neural networks
that compete in a game [1]. These networks are referred to
as the generator G and discriminator D. While GANs are
primarily used to create and manipulate images, they have
also been useful in a variety of other fields as covered in 1.5
Survey of GANSs. For the purpose of this paper, we will focus
on the specific task of image generation.

The aforementioned game is played as follows: The gen-
erator and discriminator are trained in tandem. G is given
randomly generated noise, z, and attempts to create a batch
of new images G(z). A combination of these “fake” images
and “real” images, x, are given to the discriminator. It then
attempts to classify each image as real or fake and both
networks update their weights accordingly. D is rewarded for
all correct guesses and G is rewarded every time it is able
to fool D. An important distinction here is that G is not
rewarded if D incorrectly labels a real image. This follows
basic logic as the generator did not play a role in the output of
D(x). Instead, G is rewarded each time D(G(z)) is incorrect.
The pseudocode that defines the training loop can be seen
in Algorithm 1. The game is ideally played until a Nash
equilibrium is achieved.

More technically, we wish to train the generator such that
the probability distribution ps obtained by G(z) approaches
Dreal, the probability distribution from D(x). Simultaneously,
D is trained to maximize the probability of correctly labeling
samples both from the dataset and from G [1]. This is modeled
as a two player minimax non-zero sum game with a value
function:

Dr. Marjorie Darrah
West Virginia University
Eberly College of Arts and Sciences
Morgantown, WV
marjorie.darrah@mail.wvu.edu

mingmaxpV (G, D) = E[log(D(x))]+E,[1-log(D(G(z)))]
(D
Here, D attempts to maximize the entire function V (G, D),
whereas G minimizes only the right operand.

E.[log(1 - D(G(2)))] 2

The value function is simply a derivation of Binary
Cross Entropy (BCE). This is clear because the value for
D is simply the sum of binary functions: BCE[D(z)] +
BCE[D(G(z))]. It follows then that G is derived from the
function: BCE[D(G(z))] A full derivation can be found in
Appendix A.

It can be observed that (2) tends to perform poorly in
practice. Early in training, when G is poor, D is able to
reject G(z) with high confidence. Because of this D(G(z))
will approach zero, causing the output of log(1 — D(G(%)))
to approach zero as well, saturating the function [1]. A solution
proposed in the original GAN paper by Goodfellow et al. was
that instead of having G attempt to minimize (2) it should
instead maximize log(D(G(z)).

GAN:Ss are trained by alternating optimization on the G and
D. Over training the discriminator before updating the weights
on GG will prevent the generator from improving as it will never
fool D and thus never learn. Additionally, under training D
will cause the GAN to reach a Nash equilibrium too early
as the generator will quickly and easily fool D even while
producing “garbage” images. The method used to alternate
training is largely up to the developer. Typical approaches
include either performing one iteration on the discriminator,
then one on the generator or performing k iterations on D
before doing one on G. Though, there is some debate on which
of these methods performs better [2].

B. Problems with GANs

Training GANs can be very temperamental and hard to train.
Unlike normal neural networks which are simply trained to
evaluate static data, GANs are more of a balancing act. Both
G and D must continuously counteract improvements made by
the other, creating a very unstable environment. As a result,

Algorithm 1 G, D tandem training with k steps pretraining

for Total iterations do
for Total Batches of size B do
X +{z1,29,....,25}
7+ {Zl, 29y wuey ZB}
G_z + {G(z1),G(2z2),...,G(zB)}
for k steps do Update D by maximizing:
~V0p % 2, [log(D(X)) + log(1 — D(G(2))]
end for
Update G by minimizing:
~Vla g Yo llog(1 — D(G(2))
end for
end for

there are a variety of “failure modes” associated with GAN
training.

The most obvious GAN failure is that of convergence.
The performance of each network is heavily dependent on
the performance of the other. A strong discriminator can
prevent the generator from learning and vice versa. Even more
bothersome is that as G improves, D will naturally have
a more difficult time distinguishing between real and fake
images, eventually approaching 50% accuracy. This means that
the discriminator’s feedback will become less useful over time
[3]. If this scenario is reached, the discriminator will end up
giving garbage feedback to the generator which could serve
to deteriorate the quality of generated images in the future.
As stated by [3], “for a GAN, convergence is often a fleeting,
rather than stable, state”.

It is also possible that the generator could produce an
especially convincing image that fools the discriminator easily.
Then in order to reproduce those results, it will create a
very similar image again. After a few iterations of this, G
may begin to produce only that image, resulting in very little
diversity in its outputs. The discriminator may learn to reject
the redundant images, but it also may not. In the situation
where the generator produces many very similar images and
the discriminator cannot accurately reject these images it is
apparent that G and D have arrived at a local minimum. This
failure mode is presented as the “Helvetica scenario” in the
original GAN paper [1] but is more commonly referred to as
mode collapse [3]. Figure 1 demonstrates visually how mode
collapse can look.

A great deal of research has been conducted seeking a
solution to the problem of mode collapse. One notable solution
is minibatch standard deviation [6]. This algorithm attempts
to solve the Helvetica scenario by allowing D to compare all
images across the entire minibatch, which helps ensure ade-
quate variety is maintained throughout training. This particular
algorithm is advantageous over other solutions as it introduces
no new trainable parameters or hyperparameters.

First, the standard deviation for each feature in each spatial
location is computed across the entire batch. Let w,h,l
represent width, height, and layers respectively. Given a batch

4

Lol pETIR O

T T P P P R R WD @
T T B T B B T e S N O

?
9
9
:.‘

=y G =) =~

a
L
P
3
9
L
2

T R

]
4]
35
¥
l

5
{

w

Loy
St Anta)) —

7
o
5
r)
e
-]
[".”'

P Jder gy
COde~—0O %

bbbbbb

b b b b b b b &
[N R A R R AR o A A S R
PR R A R R | o o o S A R
[N AN AR KRN K o o T o
Alo L L L L L L U e e e e b b bl b e b b e e e

TP T T T T T T AW S N
LWL N WL WL AR W g) - Y o

T T T T T T T W[l Gy D
AR R R LR R o]

T P W B P B e WD S0
R A R A A N N

=

s 20k steps S0K steps 100k steps

Fig. 1. Example of a mode collapse on MNIST dataset.

of size m comprised of feature maps f € R3, the standard
deviation of each f; ; across the entire batch is computed.
This operation yields w * h standard deviations, which are all
averaged to a single value, std. 4. Finally, std,.4 is replicated
and concatenated to all spatial locations across the entire batch.
The Python implementation of this algorithm can be found in
Appendix B. Mathematically, these values can be computed
as follows:

m

1
mean;; = — Z i 3)
m =1
1 &)
Stdi’j = E Z(fi’j’l — meani,j) (4)
=1

C. Performance metrics

Evaluating the performance of GANs differs significantly
from traditional methods. The problem with generating new
and unique images from some randomly sampled noise is that
there is no “label” for which to compare the output. The task
at hand is not to create an image of some specific instance, but
instead to create an image that resembles the training dataset
in some way. As such, an algorithm is needed to determine
the overall quality of a generated image.

There are two primary performance metrics: Inception Score
(IS), and Fréchet Inception Distance (FID). Functionally, these
two approaches are very similar, but the methods with which
they evaluate performance differ subtly.

Inception Score (IS) evaluates two things simultaneously:
variety across multiple images, and individual images look
like something [7]. It is based on the Inception classifier
built by Google. Inception returns a probability distribution.
This distribution can then be used to determine if the image
contains a distinguishable object. For example, if there is a
clear subject, the probability distribution will be skew toward
a certain category, otherwise it will be relatively uniform. It
should be noted that we do not care if the actual category is
correct. We simply want Inception to detect a clear object.

By repeating this process for some 5000 images (as rec-
ommended by the original authors) and summing the label

distributions we can create a marginal distribution. Ideally,
similar labels should have a skewed distribution, indicating
that the subjects are all very similar. Conversely different la-
bels should have a more uniform distribution, which indicates
variety across images Figure 2 shows a visual representation
of the behavior of IS.

In an ideal situation, the aforementioned distributions should
be opposites, so we obtain our Inception Score by computing
the Kullback-Leibler (KL) Divergence of the two probability
distributions. A high KL divergence indicates very different
distributions, thus giving desirable results. Mathematically,
Inception Score can be computed via the following function:

IS = exp KL[p(ylz = G(2))[[p(y)] (5)

where:
x = set of images
y = set of labels
p(y|z = G(z)) = label distribution from InceptionV3
KL = Kullback Leibler Divergence defined by:

Dir(PIQ) = = Y, x Pla)log($2)

Like Inception Score, Fréchet Inception Distance uses the
Google Inception architecture as a performance measurement
tool. Unlike IS, FID measures the structural similarity between
two instances. Instead of using the probability distribution
generated by Inception, FID uses the output from the layer
before prediction to compare the feature maps across an image
batch. This is done by comparing the mean and standard
deviation of each of the feature maps using Fréchet Distance
[5]. Real and fake images are passed into the Inception
network, and the resulting embeddings, R and F' respectively,
are given to the below function, computing the FID score for
the given image set.

d?> = (lmgr — mp|2)? + Tr(Cr + Cr + 2(CrCr)'/2) (6)

where:
mp = feature-wise mean of real images
mp = feature-wise mean of fake images
Cr = covariance matrix of real images
CF = covariance matrix of fake images

A desirable model would produce a low FID score as it
implies the distance between real and fake images is as small
as possible.

II. METHODOLOGY

This implementation of GAN is trained on the CelebA
dataset to generate human faces. CelebA is a database that
contains over 200,000 images of 10,000 celebrities in various
poses. It also contains attribute annotations such as eyeglasses,
smiling, bangs, etc. As we are only focused on generating
generic faces we can ignore the annotations. It should be
noted that some implementations of GANs such as Conditional
GANs (CGANs) can generate images with specific attributes

based on certain specifications. Futher discussion on this topic
can be found in IV. Future Works.

A. Loading data

The process of loading the image data into memory is
simple. The images provide by CelebA are of size 178 x 218
pixels. Since GANs become more unstable as images become
larger, all elements are first resized to 64 x 64 pixels. The
data are then converted to a PyTorch tensor object. Finally,
the images are normalized such that all pixels fall into the
range [—1,1]. Typically, pixel values would be normalized to
[0,1], but since G uses tanh as its output, we must account
for possible negative values.

Images are stored as 3D matrices, where each pixel is
represented by a vector containing red, green, and blue values.
Color values are represented as a number in the range [0, 255],
where 255 is the maximum intensity. For example, the color
red can be represented as the vector < 255,0,0 >. To
normalize, we begin by center the RGB values such that they
fall into the range [—127,127], then divide everything by 127.

B. Model Architecture

Both G and D are fully convolutional neural networks,
which means no linear layers are used for output. G accepts in-
put noise of size [batch_size,latent, z,y], where batch_size
corresponds to the number of images to be synthesized and
latent represents the depth, or number of input channels.
The trailing = and y represent the horizontal and vertical
dimensions of the initial input. During experimentation, these
values were set to 128, 100, 1, and 1 respectively. This means
128 images are generated simultaneously based on an a single
one dimensional vector of length 100. The hidden layers in
G are comprised of transposed convolutional layers. Unlike
typical strided convolutions, which decrease output dimension,
transposed convolutional layers increase the output dimensions
according to the following function:

Doyt = (Diy —1)x S =2+« P+ (K—-1)+1 (1)

where:
D = image dimension
S = stride size
P = padding amount
K = kernel size

Each hidden layer was initialized with the following values:
S = 2,P = 1,K = 4. Additionally, the number of feature
maps were halved from layer to layer. From (7), this doubles
the output dimension after each transposed convolutional layer.
The process is repeated until the output has the desired
dimension of [64, 64, 3].

D follows the inverse operation. It begins by accepting in-
puts in the shape of [batch_size, 64,64, 3], where batch_size
was initialized to 128 during experimentation. The input is
then passed through a series of strided convolutional layers,
which decrease the size according to:

Similar labels sum to give focussed distribution

wy ||

aeyd | |
weyda|3 | |

o | |

sum

Different labels sum to give uniform distribution

uy
jeydsjg ||

1eyn

o | |
Gog []

s~ R
.y

Fig. 2. Example probability distribution produced by InceptionV3

Din+2%P— (K —-1)—1
S

The hidden layers were all initialized to halve the image
dimension while doubling the number of feature maps. From
(8), this works out to values: S = 2, P = 1, K = 4. This
process was repeated until the output has a dimension of
[2,2,1]. This output was then passed to a Sigmoid activation
layer for binary classification.

®)

Dout =

III. RESULTS

As proposed in [1], discriminator pretraining was imple-
mented to maintain healthy competition between G and D
by allowing the discriminator to perform k optimization steps
before updating the generator. Each experiment was conducted
on a batch of 50000 images from CelebA for a total of 20
epochs. Detailed results can be viewed in Appendix C.

It was found that when k£ = 1, the generator and discrimi-
nator converge rather quickly. This means no further training
would improve the system, however, the FID score is rather
high, prompting some improvement to D. This can be done
either by adjusting the architecture and/or hyperparameters or
allowing for pretraining. Setting k¥ = 2 and maintaining the
same architecture does not result in much change in the FID
score after 20 epochs, but it is apparent by the graph that the
networks may have not yet converged. Further training could
improve the quality of the synthesized images. Lastly, setting
k = 3 resulted in the Discriminator becoming too powerful,
collapsing the generator after only 10 epochs.

IV. FUTURE WORKS

There are many ways to improve the images generated
by the DCGAN. A technique called progressive growth was
introduced by [6] in 2017. This training method begins by
generating very small 4 x 4 images and gradually adding
more layers to increase the size to 8 x 8, 16 x 16, and
so on. The advantage to this is it allows the generator to
maintain stability by first learning low-level feature such as
facial structure and color. As the network grows, G is then
able to focus more on finer details. There are also a number
of normalization techniques that can be employed to aid in
stabilization and improve results. Also introduced by [6],
pixel-wise feature vector normalization normalizes the feature
vector associated with each individual pixel to the unit length
after every convolutional layer.

In addition to improving results by modifying the network
and/or training loop, a more robust performance evaluation
system would benefit the project greatly. FID scores help
give insight into the quality and diversity of generated images
without the need for visual inspection, but it does not tell
much about the convergence of the GAN. The loss graph can
be useful in determining whether the networks have converged,
but it is not very reliable. In the future a method for measuring
the distance G’s probability distribution, p,, mentioned in
Section I. Background is to D’s probability distribution p,.cqi,
would provide a useful metric when evaluating convergence
[1]. This is important because it will help conclude whether
the network has yet to converge, successfully converged, or
even diverged from a previous convergence.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

REFERENCES

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, Y. Bengio, “Generative Adversarial Nets,”
NIPS’14: Proceedings of the 27th International Conference on Neural
Information processing Systems, vol. 2, pp. 2672, 2680, Dec. 2014.
Accessed: May. 4, 2022. doi: 10.1145/3422622. [Online]. Available:
https://dl.acm.org/doi/10.1145/3422622

J. Hui, “GAN - Ways to Improve GAN Performance,”
towardsdatascience, 19-Jun-2018. [Online]. Available:
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-
acf37f9f59b. [Accessed: 02-May-2022].

“GAN Training,” developers.google.com. [Online]. Available:
https://developers.google.com/machine-learning/gan/training.
[Accessed: 01-May-2022].

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, “GANs Trained
by a Two Time-Scale Update Rule Converge to a Local Nash Equi-
librium, “ NIPS’17: Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems, Dec. 2017 Accessed:
May 5, 2022. doi: 10.5555/3295222.3295408. [Online]. Available:
https://dl.acm.org/doi/10.5555/3295222.3295408

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

T. Karras, T. Aila, S. Laine, and J. Lahtinen, “Progressive Growth
of GANs for Improved Quality, Stability, and Variation”, The 6th
International Conference for Learning Representations, 2018.

D. Mack, A Simple Explanation of Inception Score”, Medium, 2019.

APPENDIX A.
Derivation of GAN value function from Binary Cross Entropy (BCE)

Given the formula for Binary Cross Entropy (BCE),

N
BCE = yi*log(p(y:)) + (1 — yi) * log(1 — p(y:))
i=1
Where:
y; = Label of element ¢
p(y;) = Predicted label of element i

Let:
r = a real image
z = random noise
G(z) = A synthetic image generate by GG from noise z
L = Loss value

The total loss for D can be computed as Lp = BCE[D(x)]+ BCE[D(G(z))]. We will consider each operand individually.

Consider BCE[D(x)].
Choose y; = 1, since we aim to predict positive (real) samples

BCE[D(x)] = yi x log(D(x)) + (1 = ys) * log(1 — D(x))
=1xlog(D(x)) + (1 —1) xlog(1 — D(z))
= log(D(x))

Consider BCE[D(G(2))].
Choose y; = 0, since we aim to predict negative (fake) samples

BCE[D(G(2))] = yi *log(D(G(2))) + (1 — yi) * log(1 — D(G(2)))
=0xlog(D(x))+ (1 —0) xlog(l — D(x))
— log(1 - D(G(2)))

We can now simply add (9) and (10) to arrive to the following value equation for D:

Lp =log(D(z)) + log(1 — D(G(z)))

WLOG, the loss function for G, L can be derived by only considering the rightmost operand:

L = log(1 - D(G(2)))

€))

(10)

(1)

(12)

APPENDIX B.

PyTorch implementation of minibatch discrimination

class MinibatchStddev(nn.Module):
def _init_ (self):
super().__init_ ()

forward(self, x):

#Compute stddev of all feature maps
fmap_mean = torch.mean(x)

sq = torch.square(torch.mean(x - fmap_mean))

stddev = torch.sqrt(torch.mean(sq))

#Calculate mean of stddev maps

avg_stddev = torch.mean(stddev)

shape = x.size()

minibatch = torch.tile(avg_stddev, dims=[shape[@], 1, shape[2], shape[3]])

#cat to input

return torch.cat([x, minibatch], dim=1)

Fig. 3. PyTorch implementation of minibatch standard deviation

APPENDIX C.

Generation results

G and D loss

6000 7000 8000

5000

2000 3000

1000

4000

=9.616

k=1, FID

Fig. 4. Output at epoch 20,

o

5y

B EPEE
'pRAEADOEE

7

&
E
D80

B

DHEDD o
DD ED
Sip 0GR

9 5D
3) 4.

ﬂﬂl-
P

,F
(N

G and D loss
1 I A e S

0 1000 2000 3000 4000 5000 6000 7000 8000

Fig. 5. Output at epoch 20, k=2, FID = 9.502

5 ‘.‘ 3
ECECCEGE
CgffelcPu
wf LY "L 3f »] @
CE<iEm e

- - B . N
s =) i) o] ®

! 1

- | -
dcae et =G

. 8- ' _
g e s
el o] of ol 2 le

G and D loss

4000

3000

1000

12

2000

NaN

Fig. 6. Output at epoch 20, k=3, FID

