

Opioid Trafficking Detection on Social

Media via Computer Vision Approaches

Author:

Jacob Thrasher

Submitted To

Dr. Xin Li

Computer Science and Electrical Engineering 481

Statler College of Engineering and Mineral Resources

West Virginia University

Morgantown, WV

12/7/2022

1

Abstract

This report intends to expand upon previously published work, “Detection of Illicit Drug

Trafficking Events on Instagram: A Deep Multimodal Multilabel Learning Approach” by

analyzing drug trafficking efforts on the social media platform TikTok. As TikTok is a relatively

new platform, there are not many robust datasets available, especially those relating to drug

habits. We begin by introducing a TikTokScraper Python API that can easily search, download,

and label videos from the platform. Furthermore, we apply Vision Transformers to this data in a

binary classification task to determine the presence of potentially illegal substances in these

videos. It should be noted that the work presented in this report acts as a steppingstone to further

exploration of the data in the multimodal space by including audio and text information in future

classification tasks.

2

Contents

1.0 Problem Statement .. 4

2.0 Background ... 5

2.1 Transformers ... 5

2.2 Vision Transformers (ViT) ... 8

2.3 Video Vision Transformers (ViViT) ... 9

2.4 Multimodal Data Fusion ... 11

3.0 Methodology ... 13

3.1 TikTokScraper Python API ... 13

3.2 Data Collection ... 13

3.2.1 CAPTCHA ... 16

3.3 Models ... 17

3.3.1 Video Vision Transformer (ViViT) ... 18

3.3.2 Vision Transformer (ViT) .. 18

3.4 Training ... 19

4.0 Results ... 20

5.0 Future Works .. 23

References .. 24

3

Figures

Figure 1 Transformer architecture .. 5

Figure 2 Text embedding pipeline .. 6

Figure 3 Example of self-attention.. 8

Figure 4 Example of patching mechanism .. 9

Figure 5 (top) uniform frame sampling (bottom) tubelet embedding method .. 10

Figure 6 4 encoder implementations for ViViT (top) spatial-temportal attention 11

Figure 7 Common space projection for video-audio-text triplet ... 12

Figure 8 Example of puzzle piece CAPTCHA used by TikTok ... 17

Figure 9 Confusion matrices (top) and accuracy over time (bottom) for top performing model 21

Figure 10 Model overfitting .. 21

Figure 11 Best performing models by learning rate scheduler. (left) stepwise decay scheduler (middle)

OneCycle scheduler (right) constant learning rate .. 22

Tables

Table 1 Label mapping from inital collection effort ... 14

Table 2 Detailed breakdown from initial collection effort .. 15

Table 3 Updated label mapping .. 16

Table 4 Optimal hyperparameter configuration of ViT .. 20

4

1.0 Problem Statement

Social media connects people seamlessly and instantly over the internet. This is great for

individuals to stay in touch over long distances, but simultaneously acts as a medium for bad

actors to abuse its anonymous nature for illegal activities. In recent years, there has been a surge

of illicit drug trafficking efforts in the form of opioids, hallucinogens, and other narcotics, as

demonstrated in [4]. These platforms should be a safe place for its users, so it is vital to have a

mechanism that can automatically detect and report these actors. We aim to develop a robust

multimodal model to consider vision, audio, and text information to make a final, accurate,

classification.

5

2.0 Background

2.1 Transformers

 Transformers were initially introduced by Google in 2017 [8] as a sequence-to-sequence

learning model to improve upon existing methods such as recurrent neural networks (RNNs) and

long short-term memory (LSTM). It was originally created for the purpose of natural language

processing, namely language translation, but can be modified to add support for other modalities

such as image processing, discussed in 2.2 Vision Transformers.

The transformer works by first embedding an input sequence into a high dimensional

domain. It then encodes the embedded input using multi-headed self-attention and a simple

feedforward neural network. This step can be thought of as translating the input sequence into a

“language” the model can understand. From here, the encoded input can either be passed into a

multi-layer perceptron (MLP) for classification tasks such as sentiment analysis or it can be fed

through a decoder network for sequence translation. In this study, we are primarily focused on

classification, so we will not discuss the decoder in detail. Figure 1 provides an overview of the

encoder/decoder architecture, where the encoder is pictured on the left and the decoder on the

right.

Figure 1 Transformer architecture

6

 The first step to a transformer task is input embedding, which is fully illustrated in

Figure 2. Consider a sentence in plain English such as “The animal did not cross the street

because it was too tired”. As humans, this is an easy sentence to understand, but the computer

does not speak English. The first step to input embedding is to translate the input sequence into a

language the computer understands: numbers. We begin by creating a vocabulary which acts

dictionary that maps every unique word in the entire dataset to a number. The English words in

the input are simply replaced by their corresponding number. This process is called tokenization,

and each word in the sequence is a token.

 Now the sequence is in a language the computer understands. Even so, the tokens have

no meaning. The next step is to embed the inputs. This process uses a simple linear layer that

maps each token in the vocabulary to a vector with a length equal to predetermined hidden

dimension. The hidden dimension is a hyperparameter that defines the embedded dimension

space. The use of a linear layer for embedding allows the model to learn a given token’s meaning

over the course of training.

Figure 2 Text embedding pipeline

7

 At this point, the sequence is ready to be fed into the encoder block. One advantage of

transformers vs older methods such as recurrent neural networks is that the entire sequence is fed

into the network as one large matrix, rather than looking at it one token at time. This helps speed

up the process by avoiding redundant tasks but has the adverse side effect of losing positional

awareness. Since the entire sequence is analyzed in one step, there is nothing distinguishing a

sentence such as “the animal was tired” from “tried the animal was” or any of its other

permutations. To account for this, a positional encoding can be added to the sequence to hard

code positional awareness using the following functions:

𝑃(𝑘, 2𝑖) = sin (
𝑘

𝑛2𝑖/𝑑
)

𝑃(𝑘, 2𝑖 + 1) = cos (
𝑘

𝑛2𝑖/𝑑
)

Where:

• k = position within the sequence 0 < k < L/2

• L = Sequence length

• d = hidden dimension

• i = mapping for column indices in range 0 < I < d/2

• n = user define scaler (default 10000)

 The transformer encoder block uses self-attention to learn token correlation within a

sequence. Consider again the sentence, “the animal did not cross the street because it was too

tired”. The word “it” clearly refers to the animal. However, “it” is a pronoun, which takes the

place of a noun, and this sentence contains two separate nouns: “animal” and “street”. It may be

obvious to humans that “it” refers to the animal, but it is not so clear to a computer. Moreover,

how should the computer know “it” is a pronoun at all and not a third noun of equal importance,

or a verb, adjective, etc.? This is the goal of self-attention. This layer in the encoder analyzes

each token in a sequence relative to the rest of the tokens to determine which ones are most

highly correlated.

8

Figure 3 Example of self-attention

 Each token in the input sequence is passed through three individual linear layers,

generating Query (Q), Key (K), and Value (V) vectors. Each token’s Q vector is multiplied by

each other token’s K vector via dot product multiplication. Mathematically, given a sequence S,

each token Si generates a list Li = {Si * Sj | ∀𝑆𝑗 ∈ 𝑆} containing scalar outputs. Softmax

activation is then applied to Li which generates a series of scores for each token. As Softmax

scales all values into a range [0, 1], irrelevant tokens are left with an extremely low value such as

0.0001 while highly correlated tokens will have a value closer to 1. These scores are multiplied

by the corresponding V vectors to drown out the values of irrelevant words. Finally, the

weighted sum of each V vector is returned as the self-attention score.

 Residual connections are added to the self-attention scores and then passed through a

simple feed forward network, adding the residuals yet again for stability. This process repeated N

times, where N is a hyperparameter defined by the user. In a typical implementation, N can range

from 3-12 encoder layers. The final output of the transformer encoded is passed to an MLP head,

which handles the final classification task using standard methods.

2.2 Vision Transformers (ViT)

 Since input sequences are cast to a high dimensional domain before being given to the

transformer layers, extending the model to support other modalities such as vision is relatively

simple. Vision Transformers (ViT) mostly operate identically to the standard implementation.

The only difference is the manner with which input sequences are embedded. The tokenization

method discussed in 2.1 Transformers will not work here, so an analog was developed by [2] to

address this issue.

9

 We begin by dividing the input image into square patches with a dimension p. This

generates
𝑤∗ℎ

𝑝2
 patches, where w and h correspond to the image width and height respectively.

These patches can be considered the image tokens, and the number of patches will be the

sequence length. The tokens are embedded by flattening each patch and feeding them through a

fully connected layer, much like the aforementioned embedding method. Finally, positional

embedding can be added in the same manner.

Figure 4 Example of patching mechanism

 At this point, the embedded tokens function identically to the language ones from before.

Therefore, the encoder layer can function identically. Attention is computed the same way, but

instead of locating important words in a sentence, it highlights important elements in the image

such as the subject vs the background.

2.3 Video Vision Transformers (ViViT)

 We can further expand on the ViT architecture by supporting video inputs. Videos in this

context can be thought of as a collection of images, which represent the spatial dimension, but

there is an added temporal dimension that should be considered. As such, video data are loaded

as four dimensional objects in the shape [T, C, W, H], where T, C, W, and H represent the time,

channel, width, and height dimensions respectively. The added T dimension complicates both the

embedding and encoding tasks. [3] introduces various techniques to address each of these issues.

 There are two proposed methods to tokenize video inputs: uniform frame sampling and

tubelet embedding. To reduce computational complexity, both methods begin by sampling nt

frames from the video. Most frames are redundant as there is very little difference between an

image at time t = i and t = i + 1. Sampling a fraction of the total frames drastically saves on

computational cost and memory allocation without sacrificing much information.

 Unform frame sampling essentially treats the 4D video as one large 3D image by

combining the temporal domain to one token. Each of the nt sampled frames are patched via the

method introduced in 2.2 Vision Transformers (ViT). This generates nw*nh tokens per frame.

Each of these tokens are simply concatenated with the corresponding tokens from the remaining

frames. The result is a total of nt* nw*nh tokens to be passed to the transformer encoder.

10

 Tubelet embedding can be thought of as a 3D extension to the standard 2D patching

technique. This is accomplished by defining spatio-temporal “tubes”. Given a tube dimension of

𝑡 × ℎ × 𝑤, 𝑛𝑡 = ⌊
𝑇

𝑡
⌋, 𝑛ℎ = ⌊

𝐻

ℎ
⌋, and 𝑛𝑤 = ⌊

𝑊

𝑤
⌋ tokens are generated from the temporal, height,

and width respectively. A visual demonstration of each of these embedding techniques can be

view in Figure 5.

Figure 5 (top) uniform frame sampling (bottom) tubelet embedding method

 The transformer encoder must be able to account for both spatial and temporal

information when performing self-attention. As such, four models were proposed by [3] to solve

this issue. Figure 6 illustrates each of these approaches. The most intuitive approach is spatial-

temporal attention whereby the spatial-temporal tokens generated previously are simply passed

through the transformer. During the attention phase, the transformer models all pair-wise

interactions between all tokens. This is problematic as Multi-headed self-attention has a time

complexity of 𝒪((𝑛𝑡 ∗ 𝑛ℎ ∗ 𝑛𝑤)
2) making it very inefficient for video attention.

 The second model, factorized encoder, segments the spatial and temporal domains by

creating an individual encoder for each. The first encoder fully models the spatial interactions for

each temporal index. Once the spatial interactions are fully computed, the temporal information

across each frame in the same spatial location are modeled. This approach is much more efficient

than method 1 as it was a complexity of 𝒪((𝑛ℎ ∗ 𝑛𝑤)
2 + 𝑛𝑡

2).

 Model 3, Factorized self-attention, models both spatial and temporal interactions within

the same encoding step, rather than fully modeling spatial, then temporal information. The

11

encoder models interactions that occur on frames within the same temporal index, then models

interactions that occur within across all frames in the same spatial index. This is accomplished

by reshaping the input tokens from ℝ1×𝑛𝑡∗𝑛ℎ∗𝑛𝑤∗𝑑 to ℝ𝑛𝑡×𝑛ℎ∗𝑛𝑤∗𝑑 for spatial attention and

ℝ𝑛ℎ∗𝑛𝑤×𝑛𝑡∗𝑑 for temporal attention, where d represents the hidden dimension. It should be noted

that there is no difference in performance between spatial-then-temporal and temporal-then-

spatial implementations. The downside of this implementation is the number of parameters is

increased compared to Model 1 since there are two attention layers per transformer block.

 The final model, factorized dot-product attention, is functionally the same as Model 3,

but rather than reshaping the tokens for two individual attention layers, the multi-headed self-

attention layer itself is modified to compute the spatial and temporal attention weights using

different heads. The advantage to this approach is that it achieves the same computational

complexity of Models 2 and 3, while maintaining the same number of parameters as Model 1.

Figure 6 4 encoder implementations for ViViT (top) spatial-temportal attention

2.4 Multi-modal Data Fusion

 Videos themselves contain two modalities: vision and audio. Additionally, there is

frequently important text data that serves to contribute extra information about the video

contents. These three forms of data are all stored in very different ways, so in order to make use

12

of each one simultaneously, we must first project them into a common space. [1] introduces a

common space projection solution that allows video, audio, and text data to be fused in

transformer applications.

 The video and text information are embedded via the previously discussed methods.

Audio data are treated as a one-dimensional vector of length 𝑇′ and is patched into ⌊
𝑇′

𝑡′
⌋ segments

of length 𝑡′. These patches are encoded by normal methods. Common space token projection is

defined as follows:

𝒛𝒗,𝒗𝒂 = 𝒈𝒗→𝒗𝒂(𝒛𝒐𝒖𝒕
𝒗𝒊𝒅𝒆𝒐), 𝒛𝒂,𝒗𝒂 = 𝒈𝒂→𝒗𝒂(𝒛𝒐𝒖𝒕

𝒂𝒖𝒅𝒊𝒐)

𝒛𝒕,𝒗𝒕 = 𝒈𝒕→𝒗𝒕(𝒛𝒐𝒖𝒕
𝒕𝒆𝒙𝒕), 𝒛𝒗,𝒗𝒕 = 𝒈𝒗→𝒗𝒕(𝒛𝒗,𝒗𝒂)

 Here, 𝑔𝑥→𝑦 is a linear projection head that maps input x to the common space 𝑆𝑦. This

acts as a hierarchical system whereby video-audio pairs are projected to a common space first,

then fused with text information for the final mapping. The intuition for this stems from the idea

that different modalities possess different levels of semantic granularity. Therefore, this is

imposed as an “inductive bias” in the projections [4]. Figure 7 demonstrates this behavior in

application.

Figure 7 Common space projection for video-audio-text triplet

13

3.0 Methodology

3.1 TikTokScraper Python API

TikTok is a relatively young platform that has seen incredible growth in the past years.

As such, there are few robust datasets available – especially in the domain of drug use. The

TikTokScraper API aims to address both problems simultaneously. It is a flexible API that can

navigate the TikTok website autonomously, giving the API user the power to search for TikTok

users, hashtags, and other relevant terms in mass with ease. This flexibility allows us to

specifically target searches related to drug use while allowing others to use the API for their own

collection purposes. There are two main tools used to search, store, and save TikTok videos:

TikTokScraper and Discover.

 The TikTokScraper class is a barebones search tool that deploys Selenium for Python to

implement the following functions for website navigation: search, switch_tab, get_videos,

goto_user, goto_video, goto_tag, download_video, login, bypass_captcha, solve_puzzle, quit.

This class is intended for basic website navigation and bulk video collection. This can be a very

slow task up from, so a lightweight Discover class was implemented for quicker data collection.

 The Discover class is a lightweight alternative to the original TikTokScraper class that

collects and save video links instead of the metadata and mp4 downloads. The purpose of this

class is to collect links in one quick run which can later be used to collect metadata as needed.

 Metadata is stored in two object classes: Video and User. Deploying these classes on the

correct page automatically collects metadata from the video and user respectively. These objects

simply store necessary data for future use and implement a pretty print method.

3.2 Data Collection

 A comprehensive list of common drug terms from the Instagram trafficking project was

provided which included a total of 131 unique tags. To develop an ideal dataset, as many videos

related to each tag must be parsed as possible, so the provided terms were divided into 20

batches and annotated over the course of one month.

 The data collection and annotation loop employs a combination of the pure

TikTokScraper class and the Discover class to parse and annotate data. First a given batch of

hashtags is provided to the Discover class which systematically performs a search for each tag.

Selenium is only able to collect the videos that are visible on screen, so Discover attempts to load

8 “pages” before collecting links. TikTok loads new videos when the user scrolls to the bottom

of the screen, so here “pages” refers to the number of times new videos are loaded by this

method. The links for each video are loaded into a set, which helps filter out duplicates between

tag searches, and finally saved to a .txt file.

 After this is accomplished, the user is left with a list of a few hundred links that must be

manually viewed and annotated. This is done using the TikTokScraper class. Each video is

loaded by its link, then the user is prompted to provide a label according to a labelling scheme.

14

Once entered, the metadata is collected and saved to a csv, and the video is downloaded from

TikTok and uploaded to a Google Drive folder. TikTokScraper automatically advances to the

next video. The metadata that was collected during this process includes: video link, username,

user bio, video description, hashtags, mentions, and level 1 comments. “Level 1 comments”

refers to all comments that are not replies. In total, 7890 videos were manually reviewed and

annotated. A full breakdown can be viewed in the table below. It should be noted that the

labelling scheme was later changed, and more videos were downloaded, so this breakdown is not

representative of the final dataset.

Labels

1 Active illegal drug user

2 Drug dealer

3 Video about substance abuse recovery

4 Educational video about drugs

5 Legal drug use

Table 1 Label mapping from inital collection effort

15

 Labels

Current count - From folders: 1 2 3 4 5 Total positive Total searched (approx) % positive

(0) All tags 27 3 28 35 31 124 600 20.67%

(1) 100packs to 8oz 5 1 1 0 1 8 300 2.67%

(2) acetylene to activis 29 6 0 1 0 36 380 9.47%

(3) adderall to adds 0 1 0 14 8 23 300 7.67%

(4) Ambien - az 12 0 3 2 6 23 290 7.93%

(5) benzo to benzos 3 1 31 18 5 58 300 19.33%

(6) clonazepam to diazapam 18 1 5 19 2 45 200 22.50%

(7) downers to fourbars 2 0 7 7 0 16 230 6.96%

(8) heroin to hydros 0 0 0 1 0 1 200 0.50%

(9) klonazapem to mdma 8 0 17 16 12 53 260 20.38%

(10) meth to musclerelaxers 3 0 3 5 0 11 380 2.89%

(11) narcos to opiates 4 0 23 25 3 55 550 10.00%

(12) oxy to oxycoti 0 0 0 6 0 6 400 1.50%

(13) painkiller to painmeds 1 0 3 15 9 28 400 7.00%

(14) perc to perks 8 0 4 4 2 18 800 2.25%

(15) phx to promethazin 5 2 0 8 17 32 600 5.33%

(16) promethazine to psil 18 8 1 4 7 38 300 12.67%

(17) rolls to roxys 0 0 3 0 0 3 390 0.77%

(18) sellmeth to trazadone 0 0 0 2 10 12 200 6.00%

(19) uppers to vikes 0 0 7 11 0 18 400 4.50%

(20) xanax to zoloft 2 0 6 9 5 22 410 5.37%

Totals 120 13 125 168 79 505 7890 6.40%

Table 2 Detailed breakdown from initial collection effort

 From Tables 1 and 2, the initial collection efforts yielded 13 videos of suspected drug

dealers, accounting for only 2.5% of the total drug related video sample. It can be reasonably

inferred that a suspected drug dealer might post more than one trafficking video to their account,

so an additional method was implemented to investigate users that were deemed suspicious. This

method automatically downloads all videos from the selected user’s account and saves them to

the dataset. In err, it was assumed that all videos from these accounts would be related to drug

16

trafficking, but upon manual review only a fraction were. I took this opportunity to develop a

more robust labelling system and manually relabeled all videos in the dataset.

Label Content Number samples

1 Suspected Drug Dealer 88

2 Drug present in video - cannot verify legality 132

3 Drug present in video - Likely legal 106

4 Substance abuse recovery 97

5 Educational Content 177

6 Storytime video (Not about recovery) 113

7 User actively high (both legally and illegally) 19

Table 3 Updated label mapping

 The final TikTok dataset was relatively small. Transformer networks require a substantial

amount of data to perform effectively. To account for this, a sample of Instagram data was added

to the dataset. Additionally, an online image generation model, DALL-E Mini was used to

generate synthetic data to be added to the final dataset. For training flexibility, each type of data

(TikTok, Instagram, DALL-E Synthetic) were stored in separate folders that can be loaded

individually in the dataset class. This approach added 2,738 Instagram and 50 synthetic elements

to the dataset.

3.2.1 CAPTCHA

 TikTok uses a CAPTCHA puzzle system to deter bots from crawling its website.

CAPTCHAs occur irregularly, but occasionally pop-up during searches. Fortunately, the TikTok

uses a puzzle piece captcha, which can be easily defeated using Selenium and OpenCV. Puzzle

piece CAPTCHAs are solved by dragging a puzzle piece horizontally to the correct spot in the

provided picture using a slider at the bottom of the window as seen in Figure 8 below. The

image and solution location vary with each CAPTCHA, so a flexible algorithm must be

developed to account for all possible solutions.

17

Figure 8 Example of puzzle piece CAPTCHA used by TikTok

 The approach is relatively simple, but very effective. First, the provided image is

downloaded and converted to greyscale. The puzzle piece that the user slides is a separate

element, so the downloaded image will only contain the picture and solution square. It can be

observed that the solution square is outlined by a bright white border. This white happens to be

the brightest possible with a value of 255. It is reasonable to assume that a majority of the image

will have a brightness value less than 255, so each pixel that does not have a value of 255 is

converted to 0, leaving only an outline of the solution square’s border. From here, we can iterate

across the image, summing the value of the columns. If the value is above a given threshold, we

take the column index and save it as the solution square’s left bound. The approximate center of

the solution square is calculated and returned. Selenium then uses this value to move the slider to

the calculated location.

3.3 Models

 The collected TikTok data is multimodal by nature, including video, audio, and text

information. All these modes must be considered to make inferences on each of the

aforementioned class labels. As an intermediary step, only the video mode was considered. A

video classifier alone cannot accurately distinguish between legal and illegal drug use, as well as

the different types of non-drug related videos that appear in the dataset. Instead, two vision

models were built on a binary classification task: drug present and drug absent.

18

3.3.1 Video Vision Transformer

 The binary classification task of identifying drug presence does not require audio or text

information, so ViViT can be implemented as an intermediary step. Once it is fully functional

and accurate, expanding to the VATT implemented from [1] is relatively easy.

 For this experiment, Models 1 and 3 from [3] were implemented using the tubelet

embedding technique to tokenize the inputs. Due to memory limitations, videos were down

sampled severely to a spatial size of 64x128, sampling 32 frames from the temporal dimension.

The inputs were patched into tubes of size [16, 16, 16] for experiments conducted on model 3.

To simulate model 1, we simply set the temporal dimension of the patches equal to that of the

down sampled video, which treated the entire input as one large 3D image. We also implement

the Drop Token technique proposed by [1] by randomly dropping a fraction of the input tokens

to avoid redundancies and reduce computational complexity.

 Transformers take a massive amount of data to train from scratch. Fine-tuning techniques

allows us to bypass this undertaking by initializing the layers with weights from a pre-trained

model. This technique of “transfer learning” gives the network a head start since it will not need

to learn very low level details such as shapes and color. Instead, it can focus on learning the task

at hand. In this implementation, ViViT was initialized via the weights from a pretrained ViT

model. This approach works without issue for Model 1 as it contains an identical transformer

encoder block to ViT, but fails on Model 3 since the encoder is segmented into spatial and

temporal attention sections. When training on based on Model 3, we instead initialize the spatial

attention block on ViViT to the pretrained attention block provided by ViT. Then, the temporal

attention section is simply initialized to 0.

 Initializing ViViT from the pretrained ViT model can help reduce training time and

improve performance, but it can have the adverse size effect of allowing the model to easily

overfit the data. To accommodate this, n layer initialization was implemented to only initialize

the first n layers of ViViT with the pretrained weights [9]. For example, if ViViT has a total of

12 encoder layers, but n = 6, only the first 6 encoder layers will be initialized with the weights

from ViT. The remaining layers are left with random initialization. This approach gives us the

ability to fine tune the pretraining stage for more flexibility.

3.3.2 Vision Transformer

 Upon manual inspection of the positive samples of the data (i.e. the ones which contain

drug samples), it was discovered that videos that contain drug use will almost always have the

drug as the primary subject throughout the entire video. ViViT was introduced as an action

recognition model, but here, there is no action to detect. We only care about the presence of the

drug in the video and if it occurs at any one frame, the entire video is positive regardless of any

other factors.

19

 With this fact in mind, a simpler Vision Transformer model was implemented. We

randomly sample one frame from each video during loading to pass through the model. In

theory, this approach will drastically reduce training time, as inputs will be a single image, rather

than an entire video. Pretraining was accomplished identically, but without the need to

accommodate different types of models.

 Lastly, as the dataset is very small, we implemented few-shot learning techniques from

[5]. Shifted Patch Tokenization (SPT) attempts to improve the process of embedding by allowing

each individual patch to “see” more of the input image simultaneously. The entire image is first

shifted by half the patch size in all four diagonal directions: left-up, right-up, left-down, and

right-down. This shifting system is notated by 𝒮 in the original paper. The four images generated

by 𝒮 are then cropped to match the original image dimension and concatenated to the input. The

resulting object is tokenized much like the unform frame sampling method from [3] and passed

to the transformer.

 The second few-short learning technique implemented by [5] is Locality Self-Attention

(LSA). LSA is comprised of two components: diagonal masking and temperature scaling. First,

input tokens are masked on the main diagonal to prevent the model from performing self-token

attention. During the attention phase, obviously each token is going to be most highly correlated

with itself, so diagonal masking prevents this self-token self-attention setting the values of the

main diagonal equal to negative infinity. This is followed by a learnable temperature parameter,

which allows the model to determine the Softmax temperature on its own during training.

3.4 Training

 The biggest hurdle in training was the lack of data. As mentioned in the previously,

transformers take a massive amount of data to train well. The TikTok collection efforts from 3.1

Data Collection ultimately led to 732 unique TikTok samples, which is far fewer than adequate

for a transformer task. The first approach to solve this problem was a random augmentation

pipeline in which the user defines an n_passes parameter in the dataset class, which corresponds

to the number of times each data element should be loaded. For example, n_passes = 2 doubles

the total number of elements using the random augmentation pipeline. This pipeline consisted of

the following transformations: random horizontal flip, random color jitter, random invert,

random rotation, and random reverse. Here, random reverse simply reverses the order of the

frames to reverse the video.

 At this point, we still did not feel as though we had enough data, so we incorporated

Instagram data collected by [4] as well as synthetic data generated by DALL-E mini to further

expand the size of the dataset, resulting in a total of 3,520 unique data elements.

20

4.0 Results

A total of 30 experiments were conducted, comparing different hyperparameter

configurations, optimizers, model types, and learning rate schedulers. It was found during testing

that optimal results were attained by training the ViT model with SPT and LSA using Adam

optimization and a constant learning rate with the following hyperparameter configuration:

Hyperparameter Value

Learning rate 0.0008

Batch size 64

Weight decay 0.001

n_layer initialization 6

Dropout 0.2

Video dim 64x128x1

Patch dim 16x16

n_passes 2

Epochs 100

Table 4 Optimal hyperparameter configuration of ViT

 This configuration yielded a final average accuracy of 70% of the validation set without

overfitting the training data. As 50% is the baseline for random guessing on a binary

classification task, 70% accuracy is subpar performance. However, given the very limited data

available and considering the minimum requirements for adequate transformer performance, this

serves as a valuable proof of concept that can be expanded upon in future work. The figure

below outlines the accuracy over time for the training and validation sets as well as the final

confusion matrices.

21

Figure 9 Confusion matrices (top) and accuracy over time (bottom) for top performing model

 The shortage of data provided little diversity for the model to generalize. Training for

more than 50-100 epochs resulted in severe overfitting of the training data as evident by Figure

10. Expanding the dataset with Instagram and synthetic data and random augmentation did not

prove to resolve this issue. Few shot learning techniques such as SPT and LSA did, however,

help to improve the overfitting, but were not enough to completely eliminate the issue. 5.0

Future works elaborates on possible methods to alleviate the problem.

Figure 10 Model overfitting

 Optimizer choice turned out to be an important factor in improving the model’s

performance as well. During experimentation, we found that Adam optimization provided much

more stability and reduced overfitting. SGD optimization, on the other hand, allowed the model

to collapse very quickly. We also found that ViT outperformed both ViViT Model 1 and Model

3 because it eliminates irrelevant and redundant information from the video, allowing the model

22

to focus only on the primary subject. Finally, we found that learning rate schedulers have the

potential to stabilize performance with the right configuration, but unfortunately, we did not find

a configuration that wholly outperformed a constant learning rate. Figure 11 details the best

performing networks using stepwise decay, OneCycle, and constant learning rate scheduling

algorithms.

Figure 11 Best performing models by learning rate scheduler. (left) stepwise decay scheduler (middle) OneCycle scheduler

(right) constant learning rate

23

5.0 Future Works

 The results from the binary classification experiments were lackluster but serve as a

functional proof of concept. We believe much better performance could be achieved with a much

larger and more robust dataset collected by a small team of researchers. At the time of collection,

DALL-E mini was the most advanced image generation model available and produced subpar

images that did not serve to improve performance. Additionally, there was no API available to

automatically generate and save images to your device, making synthetic data collection a slow

and arduous process. Since then, however, OpenAI has released the DALL-E 2 API to the

public, which could serve to generate much more high fidelity images at a quicker pace. In the

event that the dataset must be expanded again with synthetic image, the newly available

generation techniques could make that process much more painless.

 In the future, we would like to expand the ViViT model to a multimodal approach which

includes audio and text data in its predictions. Audio is an important aspect of all videos, but

more importantly, video descriptions, user bios, and comments are arguably the most vital pieces

of information to accurately classify illicit drug trafficking on the app. [1] provides a great

starting point for this process.

 At this time, it is uncertain whether the single frame sampling technique proposed in

3.3.2 Vision Transformer is sufficient in accurately detecting drug presence in videos. More

testing is required to make a definitive decision on the topic. During this comparison, we would

like to implement an m frame sampling technique, where we sample m frames from an input

video to be treated as unique instances in training. This could potentially increase the size of the

dataset while maintaining sufficient variability across samples.

24

References

[1] H. Akbari et al, “VATT: Transformers for Multimodal Self-Supervised Learning from Raw,

Audio, Video, and Text”, 35th Conference on Neural Information Processing Systems,

Apr. 2021. Doi: 2104.11178. [Online]. Available: https://arxiv.org/abs/2104.11178

[2] A. Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition

at Scale”, International Conference for Deep Learning Representations 2021, Sept. 2020.

Doi: 2010.11929. [Online]. Available: https://arxiv.org/abs/2010.11929

[3] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lucic, C. Schmid, “ViViT: A Video Vision

Transformer”, Proceedings of the IEEE/CVF International Conference on Computer

Vision 2021, Mar. 2021. Doi: 2103.15691. [Online]. Available:

https://arxiv.org/abs/2103.15691

[4] C. Hu, M. Yin, B. Liu, X. Li, “Detection of Illicit Drug Trafficking Events on Instagram: A

Deep Multimodal Multilabel Learning Approach”, International Conference on

Information and Knowledge Management 2021, Nov. 2021, Doi: 2108.08920, [Online].

Available: https://arxiv.org/abs/2108.08920

[5] S. Lee, S. Lee, B. Song, “Vision Transformer for Small Datasets”, Dec. 2021, Doi:

2112.13492. [Online]. Available: https://arxiv.org/abs/2112.13492

[6] E. Cubuk, B. Zoph, J. Shlens, Q. Le, “RandAugment: Practical automated data augmentation

with reduced search space”. Advances in Neural Information Processing Systems 33. Sep.

2019. Doi: 1909.13719. [Online]. Available: https://arxiv.org/abs/1909.13719

[7] Maxime, “What is a Transformer”, Medium, Jan. 2019. [Online]. Available:

https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04

[8] A. Vaswani et al, “Attention is All You Need”, Proceedings of the 31st International

Conference on Neural Information Processing Systems, Dec. 2017. Doi:

10.5555/3295222.3295349. [Online]. Available:

https://dl.acm.org/doi/10.5555/3295222.3295349

[9] P. Chang, “Advanced Techniques for Fine-tuning Transformers”, towardsdatascience, Sep.

2021. [Online]. Available: https://towardsdatascience.com/advanced-techniques-for-fine-

tuning-transformers-82e4e61e16e

https://arxiv.org/abs/2104.11178
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2103.15691
https://arxiv.org/abs/2108.08920
https://arxiv.org/abs/2112.13492
https://arxiv.org/abs/1909.13719
https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04
https://dl.acm.org/doi/10.5555/3295222.3295349
https://towardsdatascience.com/advanced-techniques-for-fine-tuning-transformers-82e4e61e16e
https://towardsdatascience.com/advanced-techniques-for-fine-tuning-transformers-82e4e61e16e

